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Abstract

bry11 = f(bg1) bit12 = f(bg2)

Figure 1: The dCMF model. The tensor X is factorized using factors A = [al ag], C = [cl CQ]
and By = [bkl ka] Vk < K, where K is the number of time-steps. dCMF captures evolving
patterns through the By factors, which are regularized to adhere to a linear dynamical system.

Multi-way datasets (also referred to as higher-order tensors) are commonly analyzed using unsuper-
vised matrix and tensor factorizations to reveal the underlying patterns. Frequently, such datasets
include timestamps and could correspond to, for example, health-related measurements of subjects
collected over time. In their essence, these methods decompose the data into interpretable factors
that reveal the underlying patterns. When one of the “ways” that the data evolves across is time,
implying that patterns can change over time, the objective of such analyses often becomes the
identification and tracking of the underlying evolving patterns.

Standard methods can be used off-the-shelf to analyze such temporal data. For example, the
CANDECOMP/PARAFAC (CP) tensor model [1] can be used to extract a temporal factor that
captures the evolution of pattern strength over time. However, the underlying structure remains
fixed. PARAFAC?2 [2] addresses this limitation by allowing factors that capture structural changes
and has been previously used to capture evolving patterns [3], though specific structural constraints
must hold. In contrast, coupled matrix factorizations (CMF') [4] impose no such constraints, offering
greater flexibility but lacking uniqueness guarantees. These approaches, however, do not account
for the inherent sequential nature of the time dimension. Taking the temporal aspect into account
offers several advantages, including more accurate future predictions [5] and robustness to noise
and missing data [6,7]. There are numerous approaches incorporating time in the literature, with
temporal regularization being a prevalent strategy [7—10]. Another approach to studying evolving
patterns is through linear dynamical systems (LDS). For instance, many studies in hyperspectral
imaging utilize LDS, e.g., [11], and the g(eneralized)LDS framework has recently been proposed to
analyze multiple multivariate time series [5].

Analyzing temporal multiway data with the goal of capturing interpretable evolving patterns re-
quires methods with specific properties: (a) time-awareness to ensure the sequential nature of
time is captured, (b) structural flexibility to allow for changes in underlying patterns, and (c)
uniqueness for interpretability. To the best of our knowledge, there is a lack of methods fulfilling
these properties.



In this work [12], we bridge the gap between tensor factorizations and dynamical modeling and
propose d(ynamical)CMF (see Figure 1). dCMF constrains the temporal evolution of the latent
factors to adhere to a specific LDS structure, thus taking into account the order of the observations.
We explore how the proposed method is related to CP, PARAFAC2 and t(emporal) PARAFAC2
[6,10]. We highlight also the fact that if an estimate of the transition matrix is known a-priori, the
framework allows for promoting this specific structure on the evolving factors.

Using extensive experiments on synthetic data, we demonstrate the effectiveness of the proposed
method in terms of recovering the underlying patterns accurately. We generate the ground truth
factors, form the datasets, add noise (multiple levels are considered) and attempt to find the
underlying patterns. Three different cases are designed. In the first, where the ground truth
is smoothly changing and adheres to the PARAFAC2 structural constraint, we observe similar
performance between dCMF, PARAFAC2 and tPARAFAC2. However, in the second case where
the structural constraint is violated, dCMF outperforms alternative methods when the data is
smoothly changing. Lastly, we create data where the evolving factors are evolving according to
different transition matrices and we observe that utilizing this information helps dCMF achieve
higher accuracy. We empirically discuss the uniqueness of the computed factors.
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